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Abstract

The propagation of different tracer signals in deep western boundary currents is examined

in a simple model in which there is uniform flow in a narrow boundary current and mixing

between this current and a stationary interior reservoir. Analytical expressions are derived for

the transit-time distributions (TTDs) and for the propagation time (“tracer ages”) of tracers

with exponentially growing or periodic concentration histories at the boundary current’s

origin. In the limits of very slow or very rapid mixing between the current and interior

reservoir all tracer signals propagate at the same rate: For slow mixing the tracer age equals

the advective time, whereas for rapid mixing it equals the mean transit time, which is much

larger than the advective time. In contrast, for intermediate mixing rates the tracer age

is sensitive to the timescale of the tracer variations (e.g., time constant for exponential

growth or period of oscillation), and varies between the advective time and the mean age.

Comparisons of the model with CFC and tritium observations indicates that the North

Atlantic deep western boundary current (DWBC) is the intermediate mixing regime, with

current speed around 5 cm/s and mixing timescale around 1 yr. In this regime anomalies in

temperature and salinity of decadal or shorter period will propagate downstream at roughly

the current speed, which is much faster than the spreading rate inferred from CFC or tritium-

helium ages (e.g., 5 cm/s compared to 2 cm/s). This rapid propagation of anomalies is

consistent with observations in the subpolar DWBC, but is at odds with inferences from

measurements in the tropical DWBC. The sensitivity of the tracer spreading rates to tracer

and mixing timescales in the model suggests that tight constraints on the flow and transport

in real DWBCs may be obtained from simultaneous measurements of several different tracers,

in particular hydrographic anomalies and steadily-increasing transient tracers.
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1 Introduction

Deep western boundary currents (DWBCs) play an important role in ocean circulations and

the climate system. In these currents waters formed in polar and subpolar regions flow into

other regions, and even the other hemisphere, transporting freshwater and anthropogenic

carbon. Quantifying this transport is thus important for understanding the ocean’s role in

redistributing heat, propagating climate anomalies formed in polar regions, and sequestering

anthropogenic carbon.

Estimates of the current speeds and effective transport rates in these boundary currents

have been obtained from a variety of measurements, including direct measurements of the

velocities, measurements of hydrographic tracers (temperature and salinity) and transient

tracers (such as chlorofluorocarbons (CFCs) and tritium), and the movement of subsurface

floats. Generally the transport rates inferred from these data differ. For example, the mean

velocities in the North Atlantic DWBC from current meters are around 5-10 cm/s (e.g., Watts

1991, Pickart and Smethie 1998), whereas the spreading rates inferred from hydrographic

anomalies is 2-2.5 cm/s (e.g., Molinari et al 1998, Freudenthal and Andrie 2002) and that

inferred from transient tracer ages is around 1-2 cm/s (e.g., Doney and Jenkins 1994, Smethie

et al. 2000, Fine et al. 2003).

It is now recognized that the differences among these estimates are primarily due to

mixing and recirculation (e.g., Pickart et al., 1989; Doney and Jenkins, 1994). A wide range

of pathways and transit times are available from the surface to points along the DWBC, and

the net effect is to reduce the propagation rate of tracer signals below that of pure advection

along the DWBC core. However, while past studies have elucidated important aspects of

the relationship between tracer propagation and flow, the variety of responses over the full

set of available tracers has not yet been fully examined. Two outstanding questions are:

Do the signals for tracers with different time dependences propagate at the same rate in

DWBCs? If not, how do the differences depend on the balance of advection and mixing?

Addressing these questions will, among other things, provide insight into how best to use

tracer measurements to infer aspects of the flow and transport in DWBCs.
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In this study we examine the dependence of several transient tracers on mixing between

the DWBC and the ocean interior using an idealized model in which the DWBC is repre-

sented as a narrow advective current that exchanges water and tracer with a much larger

stationary reservoir. While similar models have been employed in past DWBC studies (e.g.,

Pickart et al., 1989; Doney and Jenkins, 1994), our analysis has unique features: (1) We

solve explicitly for the transit-time distribution (TTD), which provides a novel framework

in which to interpret tracer propagation. (2) We consider a suite of idealized tracers with

exponentially- and periodically-varying concentration histories and examine the dependence

of the propagation of the tracers on mixing. (3) We apply the model to the propagation of

quasi-periodic anomalies in temperature and salinity.

In the next section the model is presented, and compared with several other idealised

models used previously. The distributions of transit times in this model are presented and

discussed in Section 3. Then in Section 4 idealized tracers with exponential growth or periodic

variations are examined. The propagation of realistic tracers (e.g., CFCs and tritium) are

examined Section 5, and model results are compared with observations. Concluding remarks

are in final section.

2 Model

The model we use consists of two coupled regions: a narrow boundary current with uniform

flow u along the current and a larger stationary interior reservoir. Tracers are assumed to

be well-mixed in the across-flow direction in both regions. See Fig. 1 for an illustration and

Table 1 for a glossary of symbols. There is mixing between the current and interior, which

is parameterized as relaxation with timescale tmix. For this system the tracer continuity

equations are
∂χb
∂t

+ u
∂χb
∂x

+
1

tmix
(χb − χi) = Sb, (1)

∂χi
∂t
− α

tmix
(χb − χi) = Si, (2)
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where x is the distance along the current, χb(x, t) and χi(x, t) are the tracer concentrations

in the boundary current and interior regions, Sb(x, t) and Si(x, t) are the tracer sources and

sinks, and α = δb/δi is the ratio of the width of the boundary current to that of the interior

region. Boundary conditions on χb are applied at x = 0.

This model is highly idealized. In reality the current speed and width, and exchange

between current and interior vary both spatially and temporally. Also, in the real oceans

there are zonal (across flow) variations in tracers fields and multiple source regions for the

tracers. Nonetheless, the model include the features of advective flow in the boundary

current and mixing with surrounding regions, both of which are known to be of first-order

importance. Moreover, due to it’s simplicity, solutions for a variety of tracers are readily

obtained and interpreted. Furthermore, as we shall show, the simple model is capable of

reproducing many observed features of tracers in the North Atlantic DWBC.

Several other studies have considered similar models. Doney and Jenkins (1994) consid-

ered a model the same as that above except that the area of the interior region increased down

stream (they expressed the exchange between regions in terms of a coefficient κ = Ab/tmix,

where Ab = δbL is the area of the boundary current). Doney and Jenkins examined the

propagation of tritium and excess helium (3He) in this model, but did not present results for

other tracers. They presented numerical solutions for a flow configuration with Ab = 0.8×108

m2 and Ai increasing from 0.6 ×108 m2 to 2.2 ×108 m2, and showed that the model could

reproduce the main features of the observed tritium and excess helium in the North Atlantic

DWBC when u = 5 cm/s and κ between 1.2 and 2 m2/s. In terms of the parameters in

equations (1) and (2) this corresponds to α between 0.03 and 0.13 and tmix between 1.3 to

2.1 yrs.

Pickart et al. (1989) also considered pipe models of DWBCs (see also Rhein 1994 and

Haine et al. 1998). In the models of Pickart et al. there are three regions: an inner advective

core, an adjacent shoulder region which exchanges with the core and accumulates tracers,

and an infinite surrounding region which is tracer free. Pickart et al. considered two versions,

one where the core and shoulder regions have equal cross-section area and there is no motion
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in the shoulder region, and another where there is flow in a shoulder region with larger area

than the core. Comparisons of CFC measurements in the DWBC near the Grand Banks with

both models yielded core speeds of 5-10 cm/s and lateral diffusivities (for mixing between

the core and shoulder region) of O(106) cm2 s−1.

The model defined by expressions (1) and (2) is also similar to the “leaky pipe” models

used to model transport in the stratosphere (e.g., Neu and Plumb 1999, Hall 2000, Hall

and Waugh 2000). The stratospheric leaky pipe models couple a tropical region to two

mid-latitude regions, have density decreasing with height (distance along the pipe), and

have reverse flow in the mid-latitude regions (constrained by mass continuity). Because of

the along-flow density variations the details of the solutions to these models differ from the

solutions presented below, but many qualitative features carry over.

We consider here solutions of equations (1) and (2) for several different tracers, including

idealised tracers for which analytical solutions can be obtained and realistic tracers for which

the solution is obtained numerically by convolution with the analytic transit-time distribution

of the model (see next section). Only the solutions within the boundary current are presented

in the main body of the text, so we drop the subscript “b”. Full solutions for the boundary

current and interior are given in the Appendix.

3 Transit-Time Distributions

Several recent studies have highlighted the fact that there is not a single time for transport

from one location to another in the oceans but rather a distribution of transit times (e.g.,

Beining and Roether 1996, Deleersnijder et al. 2001, Khatiwala et al 2001, Haine and Hall

2002). These transit-time distributions (TTDs) correspond to boundary Green’s functions

that propagate a boundary condition on tracer concentration from a specified region into

the interior (Hall and Plumb 1994, Holzer and Hall 2000, Haine and Hall 2002). That is,

χ(x, t) =
∫ ∞

0
χ(0, t− ξ)G(x, ξ)e−λξdξ, (3)
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where χ(0, t) is the known tracer concentration history at x = 0, and G(x, ξ) is the propa-

gator, or TTD, with the interpretation that δξG(x, ξ) is the mass fraction of the water at x

that had last contact with x = 0 an elapsed time ξ to ξ+ δξ. (The factor e−λξ represents the

radioactive decay of the tracer with decay rate λ.) TTDs provide a fundamental description

of the transport in a flow, and are independent of any particular tracer.

As outlined in the Appendix the TTDs in the boundary current are

G(x, t) = Ĝ1δ(t− tadv) + Ĝ2Θ(t− tadv), (4)

where

Ĝ1 = e−1/Pe, Ĝ2 =
α

ζtmix
e−(1+ζ2)/PeI1(2ζ/Pe),

P e = tmix/tadv is the Peclet number, tadv = x/u is the advective timescale, ζ2 = α(t̂ − 1),

t̂ = t/tadv, I1 is the modified Bessel function of first order, δ is Dirac delta function, and Θ

the Heaviside function. The Peclet number measures the relative importance of advection

and mixing within the boundary current, with Pe >> 1 for flows dominated by advection

and Pe << 1 for flows dominated by mixing.

Figure 2 shows TTDs for tadv = 1 yr, fractional area of the boundary current α = 0.1,

and several different mixing times tmix (or equivalently different Peclet numbers). (As it is

not possible to plot a literal delta function, the term Ĝ1δ(t− tadv) is shown in these plots as

a box of width ε and height Ĝ1/ε, with ε = 0.05 yr.) If only advection is present the TTD in

the boundary current is a delta function at the advective time tadv, i.e., Ĝ1 → 1 and Ĝ2 → 0

as tmix →∞. When mixing between the boundary current and interior mixing is added the

advective spike is still present but its magnitude is weaker (Ĝ1 < 1), and there is a “tail” due

to water of various ages mixing back into the boundary current (e.g., Fig. 2(a,b)). As the

mixing increases (smaller tmix and Pe) the relative contribution due to direct advection in

the current decreases (Ĝ1 → 0) and the TTD is dominated by older waters that have mixed

with the interior (e.g., Fig. 2(c,d)). The TTDs for the interior reservoir are similar but have

no advective spike and are shifted to slightly older times (not shown). For different values of

α the detailed form of the TTDs differ, but the general shape and variations with tmix are

as shown in Fig. 2.
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The general shape of the TTDs for this DWBC model is similar to that for the strato-

spheric tropical leaky pipe (e.g., figure 4 of Waugh and Hall (2002)). Analysis of the strato-

spheric model shows that inclusion of small or moderate along-flow diffusion results in the

δ-function in the TTDs being replaced with finite, narrow peak, without significant change

to the resulting tracer solutions (Hall 2000).

The variation of the TTDs in the boundary current with distance downstream is shown

in Fig. 3, for tmix = 1 yr and α = 0.1 (compare with Fig. 2(b)). At all locations the

TTDs have an early narrow peak, due to advective transport, and a weak broad tail, due to

water that has recirculated through the interior region. The advective peak occurs at later

times for larger distances from the source, as it takes longer for the advective flow to reach

the location. In the two locations nearest the source the TTDs decrease monotonically for

time older than the peak time, but for locations further downstream there is a second, much

older, peak in the TTDs. Also, the relative contribution of the advective spike decreases

with distance from the source. At 12000 km (approximate distance along the North Atlantic

DWBC from the Denmark Strait to the tropical Atlantic) the advective peak at 8 yrs is very

small and the TTD is dominated by the tail which has a peak around 70 yrs.

The mean transit time (sometimes called “mean age” or “ideal age”) of the boundary

current TTD is (see Appendix)

Γ = tadv

(
1 +

1

α

)
. (5)

The mean transit time Γ is always greater than or equal to the advective time tadv, with

Γ >> tadv for α << 1 (narrow currents). Counterintuitively, Γ is independent of the mixing

time tmix despite the fact that TTDs itself is quite sensitive to tmix (Fig. 2). In the interior

both the TTD and Γ depend on tmix (Appendix). To understand why Γ in the boundary

current is independent of the mixing it is useful to first consider Γ in the interior. The only

way the interior region gets new water is through mixing with the boundary current. If the

mixing is slow the interior region takes a long time to renew, and Γ in the interior is old.

The contribution of mixing of interior water back into the boundary current is then a slow

trickle of very old water. Most recent water comes directly from along-stream advection. In
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contrast, in the case of rapid mixing there is a shorter renewal time, and younger mean ages,

in the interior region. Mixing back into the boundary current then makes a relatively larger

contribution. In this model the slow trickle of old water has the same impact as the more

rapid flow of younger water, so that the dependence on mixing rate falls out. (Note, this is

not the case if there is net divergence in the boundary current, in which case the interior

region gets renewed even in the absence of mixing.)

The standard deviation of the boundary current TTD is

σ =
(
tadvtmix
α2

)1/2

(6)

(The standard deviation σ =
√

2∆, where ∆ is the measure of “width” used by Hall and

Plumb (1994) and Waugh et al. (2003).) In contrast to Γ, σ depends on the mixing time tmix.

Surprisingly, σ increases for slower mixing. This can be again understood by considering the

contribution of mixing of interior water back into the boundary current. As discussed above,

for slow mixing most of water comes via advective path with a very small amount of very old

water that has been through the interior. However, this small amount makes a very large

contribution to σ. In contrast for rapid mixing there is little water via advection and most

water has same transit time (which is close to Γ), and the TTD is nearly symmetric about

Γ with very small σ (e.g., Fig. 2(d)).

As discussed above the relative importance of advection and mixing is given by the Peclet

number, Pe. Using equations (5) and (6), this can be rewritten in terms of the mean and

standard deviation of the boundary current TTD:

Pe =
tmix
tadv

=
σ2

Γ2
(1 + α)2.

As Γ is independent of the mixing time but σ increases with mixing time, Pe increases, as

expected, with mixing time (i.e. slower mixing).

Several previous studies have used one dimensional flow with constant velocity and diffu-

sion (“1D flow”), or assumed TTDs with the same form as that of 1D flow, when examining

differences between transient tracers (e.g., Sonnerup 2001, Wunsch 2002, Waugh et al. 2003),

inferring aspects of TTDs from measurements (Klatt et al. 2002, Steinfeldt and Rhein 2004,
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Waugh et al. 2002, 2004), and estimating anthropogenic carbon concentrations (Hall et al.

2004, Waugh et al. 2004). It is therefore interesting to compare the above TTDs with those

for 1D flow, whose form is sometimes called Inverse Gaussian (IG) (e.g., Seshadri, 1999;

and see, Waugh et al., 2003). For weak or intermediate mixing the shape of TTDs in the

boundary current model differ significantly from IG distributions. The peak of the boundary

current TTDs are are younger and much narrower than those of IG distributions with the

same Γ and σ. Also, the boundary current TTD can be bimodal (e.g., Fig. 2(c)) whereas

IG distributions are unimodal.

In both the boundary current model and 1D flow the mean transit time is independent

of the mixing (Γ = tadv for 1D flow) while the standard deviation of the TTD varies with the

mixing. However, the two models have very different sensitivities to mixing: The standard

deviation increases with mixing in the 1D model (σ2 = 2κtadv/u
2, where κ is diffusion

coefficient), whereas it decreases with mixing in the boundary current model (see equation

(6)). This difference is reflected in the Peclet number: For 1D flow Pe = 2Γ2/σ2 (e.g.,

Waugh and Hall 2002), in contrast to the above relationship where Pe ∝ σ2/Γ2.

4 Idealised Tracers

Before considering tracers with realistic (observed) boundary conditions we first consider

tracers with idealized boundary conditions for which analytical solutions can be obtained

directly from equations (1) and (2). Understanding the propagation of these idealised tracers

is helpful for understanding propagation of observed tracers.

4.1 Exponential Tracers

We first consider conserved tracers with exponential growth, i.e., χ(0, t) = et/Texp . Such

an increase is a good approximate of the change in CFCs between 1960s and late 1980s

(e.g., Pickart et al., 1989). For exponentially increasing tracers analytical solutions for the

concentration can be obtained from equations (1) and (2), which can be re-expressed as a
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tracer age (see Appendix)

τexp = tadv

(
1 +

1

α + rexp

)
, (7)

where rexp = tmix/Texp. This expression shows that the tracer age is bounded by the advective

time and the mean transit time, i.e., tadv ≤ τexp ≤ Γ. Furthermore, for fixed geometry (α)

the ratio of tracer age to advective time depends only on rexp. (An expression of the ratio

age of two tracers with different exponential growth rates can also be derived, e.g., Pickart

et al. 1989, but we focus here on concentration ages.)

Consider first the limits of large and small rexp. If the mixing time is much longer than

the timescale for tracer growth (rexp >> 1) then (7) reduces to τexp ≈ tadv, i.e., the tracer age

within the boundary current equals the advective time, independent of the tracer growth rate.

In this limit new tracer is advected along the boundary current core before mixing with the

interior can have any appreciable impact, and the tracer propagation approximates simple

bulk advection. In the other limit, rexp << α, equation (7) becomes τexp ≈ tadv(1+1/α) = Γ.

Thus, in the limit of very rapid mixing the tracer age equals the mean transit time (which

is much larger than the advective time, for narrow boundary currents), and again there is

little sensitivity of the tracer age to the tracer growth rate. In the limit of rapid mixing the

TTDs are nearly symmetrical with a relatively narrow peak at the mean transit time (e.g.,

Fig. 2(d)).

We now consider mixing rates between these two limits. Figure 4 shows the variation

of tracer age with mixing time tmix, for several different values of Texp (as in Fig. 2, α =

0.1). In the high and low tmix limits all tracer ages collapse to tadv and Γ, respectively,

as discussed above. In between these limits, however, the tracer age varies strongly with

timescale for tracer growth. For example, for tmix = 1 yr the age of a tracer with Texp =

7 yrs (approximately the growth timescale of CFC-113 from 1960s to 1980s) is around five

times the advective time, whereas the age is around nine times the advective time for Texp

= 30 yrs (approximate timescale for CCl4). The variation of age with mixing and tracer

growth for different α is very similar to that shown in Fig. 4. For smaller α there are older

tracer ages, especially for weak mixing when the tracer ages tend to the mean transit time,
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which is proportional to (1 + 1/α).

As discussed in the Introduction the variation of tracer ages with distance has been used

to estimate a spreading rate. From equation (7) we have that the spreading rate of the age

of an exponentially increasing tracer is

vexp =
∂x

∂τexp
=

(
α + rexp

1 + α + rexp

)
u.

This shows that (for finite tmix) the tracer spreading rate is less than the core speed, vexp ≤ u.

Also, the tracer spreading rate decreases with increasing rexp. This is illustrated in the upper

curves in Fig. 5(a) which show the variation of tracer age with x/u for several Texp, with

tmix =1 yr and α = 0.1. (If u = 5 cm/s then x/u = 1 yr corresponds to x = 1575 km.)

For tmix = 1 yr (and measurements in 1990s) the spreading rates of CFC113 and CCl4 are

around u/5 and u/9, with CFC11 and CFC12 spreading rates between these values.

4.2 Periodic Tracers

Temporal variations (anomalies) in temperature and salinity on decadal and shorter timescales

have been observed superposed on longer-term trends in the subpolar and polar North At-

lantic. The propagation of these anomalies have been used to estimate transport timescales

and spreading rates in the DWBC (e.g., Molinari et al 1998, Freudenthal and Andrie 2002,

Stramma et al. 2004). Such anomalies constitute tracers distinct from the steady increase

of CFCs (between the 1960s and 1990s). To understand differences between the propagation

of these two types of tracers it is useful to consider idealized tracers with periodic boundary

conditions, and to contrast them with the exponentially-increasing tracers.

For tracers with periodic boundary condition, i.e., χ(0, t) = Re{ei2πt/Tω}, the propagation

time of the phase of the signal (or “phase lag”) τω and the relative amplitude Aω are (see

Appendix)

τω = tadv

(
α(α+ 1) + r2

ω

α2 + r2
ω

)
, (8)

Aω = exp

(
−tadvr2

ω

tmix(α2 + r2
ω)

)
= exp

(−x
L

)
(9)
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where rω = 2πtmix/Tω is the ratio of the timescales for mixing and tracer variations, and

L = utmix(α
2 +r2

ω)/r2
ω is the decay length-scale of the amplitude. As with age of exponential

tracers, the phase lag is bounded by the advective timescale tadv and the mean transit time

Γ, and the ratio of tracer timescale to advective time depends (for fixed α) only on the ratio

of timescales for tracer variations and mixing.

If the period of the tracer variation is much shorter than the mixing time, rω >> 1, then

equations (8) and (9) reduce to τω ≈ tadv and Aω ≈ exp(−tadv/tmix) (or L ≈ utmix). That is,

the tracer signal propagates at the advective speed and amplitude attenuate over a length

scale equal to utmix. TTDs in this limit can still be broad with long tails (see Fig. 2(c,d)),

but this tail contributes little to the phase lag. The tail encompasses several complete tracer

cycles at roughly equal magnitude, which cancel, and the net signal is due solely to the

advective peak. In fact, in this limit, the amplitude of the tracer is equivalent to Ĝ1, the

magnitude of the advective spike of the TTD (see equation 4).

In the opposite limit rω << α, the equations (8) and (9) reduce to τω ≈ tadv(1+1/α) = Γ

and Aω ≈ 1 (or L = ∞). That is, when the tracer period is much greater than the mixing

timescale the tracer time lag equals the mean transit time and the amplitude is conserved.

Figure 6 shows the variation of the phase lag and amplitude with mixing time, for several

different tracer periods Tω (again with tadv = 1 yr and α = 0.1). Consistent with the above

analysis, for tmix > 1 there is little sensitivity of the phase lag or amplitude to the period of

the tracers. For smaller tmix there is some sensitivity, particularly for tracers with periods

greater than 10 yrs. However, for tmix around 1 yr and tracers with periods around or less

than 10 yrs there is only weak sensitivity, with the phase lag being close to the advective time.

Thus, in this regime, the tracer signal downstream of the source will have the same temporal

variations as at the source, except lagged by the advective time and smaller amplitude. The

weak sensitivity of the phase lag and amplitude to the frequency of the tracer variation

means that the propagation of tracer signals are non-dispersive. This is very different from

1-D advective-diffusive flows (and other flows with TTDs similar to IG distributions), where

the phase and amplitude vary strongly with the frequency the tracer variations, see, e.g.,

13



figure 3 of Waugh and Hall (2002).

Figures 5(b) and 6(b) show that for moderate and large mixing (Pe ≤ 1) there is rapid

attenuation of the amplitude of periodic tracers. For example, for the parameters in Fig.

5(b) and current speed u = 5 cm/s the amplitude is less than 10% at x = 4000 km (tadv =

x/u ≈ 2.5 yrs), and less than 2% at x = 6000 km. This means that for these mixing regimes

the tracer signal will not be detectable very far downstream from the source region.

The above analysis of the variations of the phase lag and amplitude of periodic tracers

suggests that, within the intermediate mixing regime, decadal or shorter variations in tem-

perature or salinity (or other other tracers) will propagate at roughly the advective speed,

which is much faster than the propagation of steadily growing (or decaying) transient tracers

(such as CFCs). Furthermore, the amplitude of these variations will attenuate very rapidly,

and a strong signal is not expected a long way from the source.

5 Realistic Tracers

The above analysis of idealised tracers shows that in the simple boundary current model

large differences can exist among the timescales inferred from different tracers. As discussed

in the Introduction, differences in tracer timescale (spreading rates) have indeed been noted

from observations. To examine this in more detail we now consider the evolution of realistic

tracers in the model.

5.1 Transient Tracers

We first consider the distributions of transient tracers CFCs, SF6, and tritium (3H) and

daughter product helium-3 (3He). The concentrations, and ages, of these tracers is deter-

mined using equations (3) and (4) together with specified boundary conditions χ(0, t). For

CFCs and SF6 boundary conditions we use their atmospheric histories (Walker et al., 2000;

Maiss and Brenninkmeijer, 1998) scaled to 70% of the equilibrium solubility. This represents

typical source conditions of North Atlantic overflow waters (Smethie et al, 2000; Smethie and
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Fine, 2001). For tritium the Denmark straight overflow time series from Doney and Jenkins

(1994) is used as the boundary condition, and a decay rate λ = 0.05576 yr−1 is used in

equation (3). The helium-3 concentration is then calculated as the concentration of tritium

lost through radioactive decay (i.e. we consider in the model only helium-3 that comes from

tritium decay). The tritium and helium concentrations are then combined together to form

a tritium-helium age (e.g., Jenkins and Clarke 1976).

We first compare model distributions of these transient tracers with observations along

the North Atlantic DWBC. The symbols in Figure 7 show the observed variations of (a)

tritium concentration and (b) tritium-helium age in 1981 (Doney and Jenkins 1994), and

(c) CFC11 concentration age and (d) CFC11/CFC12 ratio age in 1991 (Smethie et al.

2000). These observations show that the tritium concentration decreases and tracer ages

increase with distance along the DWBC, and that the CFC11 concentration age is signifi-

cantly older than the tritium-helium age and CFC11/CFC12 ratio age at the same location.

(As the CFC11/CFC12 ratio peaked in the mid-1980s the ratio age cannot be defined for the

“younger” water in 1991.) The curves in Figure 7 show model calculations for u = 5cm/s,

α = 0.1, and several values of tmix. For tmix ≈ 1 yrs the model reproduces well the observed

variations in all four quantities. Thus, despite its great simplicity, the model is surprisingly

good at reproducing the observed tracer signals.

Equally good fits to all four observed quantities is obtained for other values of α, u, and

tmix, but the range of values is relatively small. For α = 0.05 the data are fit for u around

7 to 9 cm/s and tmix between 1.5 and 0.5 yrs (for slower advection a longer mixing time is

required to match the data), whereas for α = 0.15 the data are fit for u around 3 to 5 cm/s

and tmix between 1.5 and 0.5 yrs. For smaller or larger α it is not possible to match all four

quantities simultaneously. The above range of values for u, tmix, and α that result in good

agreement between model and observations lies within the “intermediate-mixing” regime, in

which the CFC and 3He tracer ages lie between the advective timescale, tadv and the mean

transit time, Γ.

The values for both u and tmix are similar to best-fit values in the models of Pickart
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et al. (1989) and Doney and Jenkins (1994). Furthermore, the model core velocity in this

parameter range (u ≈ 5 cm/s) is also similar to mean velocities from direct measurements

(e.g., Watts 1991, Pickart and Smethie 1998). For the reasons discussed in Section 4, however,

u = 5cm/s is significantly larger than the tracer-age spreading rates.

We now examine modeled tracer ages in the same mixing regime for a larger suite of

tracers. Figure 8 shows the spatial dependence of tracer age (in 1991) for CFC-11, CFC-12,

CFC-113, tritium-helium, CCl4, and SF6. The model parameter values are u = 5 cm/s,

tmix = 1 yr and α = 0.1. The CFC11, CFC12 and tritium-helium ages are similar, except

for x greater than about 5000 km, where the tritium-helium age is several years younger

than CFC11 and CFC12 ages. The CFC-113 and SF6 ages are similar to each other, but are

younger than CFC11, CFC12, and tritium-helium ages. On the other hand, the CCl4 age

is older than all the other tracers shown. These relationships among the tracer ages hold

for other parameters values in the intermediate mixing regime, and are consistent with our

analysis of exponentially growing tracers (e.g., Fig. 4).

The range of tracer ages in Fig. 8 is broadly consistent with measurements made in the

1990s of CFCs (Azetu-Scott et al. 2003) and tritium and helium (Khatiwala et al. 2002) in

DSOW within the Labrador Sea. Calculations of ages from these observations yield CFC113

ages around 10 yrs, tritium-helium, CFC11 and CFC12 ages around 15 yrs, and CCl4 ages

around 20 yrs. These ages are in reasonable agreement with Fig. 8 for x = 2500 km, the

approximate distance from the Denmark Strait to the Labrador Sea.

5.2 Hydrographic Tracers

We now consider the propagation of temperature and salinity anomalies. These anomalies

act as tracers with fluctuating boundary conditions, and the model analysis of Section 4.2

shows that fluctuating tracers with period less than about 10 years have a timescale for phase

propagation closely approximating the advective time, for flow in the intermediate-mixing

regime. We therefore expect anomalies in T and S to propagate more quickly along the

boundary current than would be indicated by a simple interpretation of CFC or tritium-
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helium age.

Dickson et al. (2002) presented long-term salinity time series of overflow waters in the

Irminger and Labrador Seas. The major focus of their analysis was the long-term freshening

of these waters, but the data also show more rapid variations (oscillations) about this long-

term trend. These variations propagate from overflow sills to the Labrador Sea in less than

2 years: For example, the minimum in DSOW salinity at the Denmark Strait in 1994 is

observed at the western Irminger Sea in 1995 and in the Labrador Sea in 1996. A 2 year

spreading time is consistent with the simple model: It is much shorter than the typical

tracer ages in the Labrador Sea of 10 and 20 years (see above), and implies an anomaly

spreading rate around 4 cm/s which is close to the mean current speed. Rapid spreading of

DSOW temperature anomalies was also observed by Stramma et al. (2004): They noted a

propagation time of less than 2 yrs between between the Labrador Sea (56◦N) and Grand

Banks (43◦N), which implies a lower bound on the spreading rate of 3-4 cm/s. This is again

broadly consistent with the model.

Temporal variations in temperature and salinity within the subtropical and tropical

DWBC have also been reported, e.g., Molinari et al (1998), Freudenthal and Andrie (2002).

These studies calculated spreading rates based on anomalies in LSW within the DWBC

that are faster than those calculated from tracer ages (2-2.5 cm/s compared to 1-2 cm/s).

While this difference between hydrographic anomalies and transient tracer ages is qualita-

tively consistent with the model, there are quantitative differences for intermediate-mixing

parameters. The model-predicted transit time (the advective time) is much shorter than that

inferred from the hydrographic observations: assuming a mean current speed of 5 cm/s the

time for advection over 6000 km (Labrador Sea to the subtropics) is around 4 yrs, whereas

the above studies infer transit times of 8 to 10 yrs. Furthermore the model predicts that

the amplitude of the anomalies should be extremely small (e.g., assuming u = 5 cm/s and

tmix = 1 yr the amplitude 6000 km downstream from the source is only about 2% that at

the source), whereas the observed tropical anomalies are of similar amplitude to those in the

Labrador Sea.
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It is possible that these model–data differences are due to the simplicity of the model.

The real ocean exhibits temporal and spatial variations in the boundary current’s speed,

width, and interaction with surrounding waters, processes which are not included in our

simple model. However, additional complexity to the flow should generally act to increase,

not decrease, the attenuation rate of propagating anomalies. For example, temporal variation

in current speed expands the range of transit-times from source to observation point. The

transported signal is an average over a wider range of anomaly phases at the source, and its

amplitude is further attenuated.

An alternative possibility is that the observed T and S anomalies in the subtropical

and tropical DWBC are not simply transported versions of subpolar anomalies, but instead

are generated (partially or totally) by variations in ocean circulation. For example, the

dynamical variability that produce the T and S anomalies may also affect the transport

pathways or generate waves that alter T and S in the tropics (e.g., Yang and Joyce 2003,

Johnson and Marshall 2002). Another possibility is that the observed LSW anomalies could

be due to local transport features (e.g., eddies), and not related to changes in the source

regions.

6 Conclusions

We have examined the transit-time distribution and the propagation of transient tracers

in the DWBC using a simple model comprised of a narrow advective core mixing with a

stationary reservoir. When there is very rapid or very slow mixing between the current and

interior reservoir there is only weak sensitivity of the tracer propagation time (tracer age)

to the tracer’s concentration history at the source region. In the weak mixing limit the

tracer signals propagate at the current speed, whereas in the strong mixing limit the tracer

propagation time is close to the mean transit time, which is much older than the advective

time. In between these rapid and slow mixing limits the tracer propagation time is, however,

sensitive to the concentration history at the source. The propagation time of tracers with

exponentially-increasing and periodic histories varies between the advective time and the
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mean transit time, depending on the ratio of the tracer timescale (exponential time constant

or period of fluctuation) to the mixing time.

Comparisons of the model with CFC, tritium, and helium observations indicates that

the North Atlantic DWBC is in the intermediate mixing regime, with current speed u ≈ 5

cm/s and mixing time tmix ≈ 1 yr. A current speed of around 5 cm/s is similar to the mean

velocities from direct measurements (e.g., Watts 1991, Pickart and Smethie 1998) as well as

the values obtained by Pickart et al. (1989) and Doney and Jenkins (1994) for their models.

This velocity, however, is faster than spreading rates inferred from CFC and tritium-helium

ages, which are around 1-2 cm/s.

For the above parameters the model predicts that the phase of periodic tracers with

decadal or shorter periods will propagate at roughly the current speed, and the amplitude of

these variations will decay rapidly with distance (e.g., the amplitude at 4000 km downstream

is less than 10% that at the source). This implies that decadal or shorter fluctuations in

hydrographic tracers (temperature or salinity) will propagate much more quickly than the

spreading rate inferred from CFC or tritium-helium ages and that the signal of such variations

produced in subpolar regions will have decayed to ∼ 2% in the tropics.

The observed propagation of fluctations in DSOW salinity and temperature in the North

Atlantic DWBC are broadly consistent with this model prediction. DSOW salinity anomalies

are observed to take less than 2 yrs to propagate from the Denmark straits to the Labrador

Sea (Dickson et al. 2000) while DSOW temperature anomalies are observed to propagate

from the 56◦N and 43◦N in less than 2 yrs (Stramma et al. 2004). Both sets of observations

imply spreading rates of atleast 3-4 cm/s, which is more rapid than spreading rates from

tracer ages and close to the mean current speed. However, transit times inferred from LSW

anomalies measured in the (sub)tropical Atlantic (e.g., Molinari et al 1998, Freudenthal

and Andrie 2002) are around twice that predicted assuming a current speed of 5 cm/s.

In addition, the tropical anomalies have much greater amplitude than predicted by the

model. The cause for these differences is unclear. They could be due to deficiencies in the

simple model. It is also possible that the anomalies observed in the tropics are not simply
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transported subpolar anomalies. Further analysis is need to examine these issues.

A general conclusion from this study is that the impact of mixing on the spreading

rate of tracer signals in DWBCs varies among tracers, and a wide range of spreading rates

can be obtained from available tracers. This indicates that the tracers contain indepen-

dent information and suggests that tight constraints on the flow and transport in DWBCs

may be obtained from simultaneous measurements of several different tracers, in particular

hydrographic anomalies and steadily-increasing transient tracers. We plan to explore this

possibility in the future.

One approach for such an analysis is to perform a more detailed model-observation com-

parison than presented here, including the large database of tracer measurements that now

exists from WOCE and other programs. This could involve the current model configuration

or more complicated (realistic) configurations (see below). Another approach is to use mea-

surements to constrain aspects (e.g., moments) of the TTDs, without direct reference to a

particular transport model. Klatt et al. (2002) and Steinfeldt and Rhein (2004) have per-

formed such an analysis, using repeat CFC measurements to infer the TTDs in the Weddell

Sea and tropical Atlantic DWBCs. Caution is required, however, in such an analysis as the

results and subsequent interpretation may be sensitive to the assumed shape of the TTDs.

The TTDs in the simple model considered here are very different from the Inverse Gaussian

functional form used in the above studies (and in Waugh et al. 2004).

As well as the above analysis of observations we also plan to perform further model

simulations. Additional features, such as flow in the interior region or time-varying flow

parameters, can be included in the model. Analytical solutions are unlikely to be obtained

for these more complicated configurations, but solutions can be obtained numerically. An

important question to be answered is whether inclusion of additional, more realistic, features

in the model dramatically alters the results presented here. In particular, we would like to

assess the robustness of our prediction that observed T and S anomalies in the tropics are not

simply transported versions of subpolar anomalies. It would also be of interest to examine

the issues considered here in dynamical models with more realistic representation of the
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processes that exchange fluid between the DWBCs and interior. This may provide not only

insight into the transport in DWBCs but also insight into the coupling of the transport to

actual physical processes.
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Appendix

The transit-time distributions (TTDs), mean transit time, ages of exponentially increasing

tracers, and phase and amplitude of periodic tracers for the model are determined by solving

equations (1) and (2) with different sources Sb, Si and boundary condition χb(0, t).

The TTDs Gb and Gi are the solutions of equations (1) and (2) with Sb = Si = 0 and

χb(0, t) = δ(t). These solutions are found by taking the Laplace transform of equations (1)

and (2) and then solving a first order differential equation for the Laplace transform of Gi.
This yields

Gb(x, t) = Ĝ1δ(t− tadv) + Ĝ2Θ(t− tadv),

Gi(x, t) = Ĝ3Θ(t− tadv),

where

Ĝ1 = e−1/Pe, Ĝ2 =
α

ζtmix
e−(1+ζ2)/PeI1(2ζ/Pe), Ĝ3 =

α

tmix
e−(1+ζ2)/PeI0(2ζ/Pe),

P e = tmix/tadv = tmixu/x is the Peclet number in the boundary current, ζ2 = α(t̂ − 1),

t̂ = t/tadv, I0 and I1 are modified Bessel function of zeroth and first order, δ is Dirac delta

function, and Θ the Heaviside function.

The mean transit time (mean age) of the TTDs is equivalent to the distribution of the

ideal age tracer (Hall and Haine 2002). The ideal age tracer is the steady state solution of

equations (1) and (2) with Sb = Si = 1 yr/yr and χb(0, t) = 0:

Γb = tadv(1 +
1

α
), Γi = Γb +

tmix
α
.

For conserved tracers with exponential growth, i.e., Sb = Si = 0 and χb(0, t) = et/Texp

the concentrations are found using the method of separation of variables. The solutions are

then combined with the definition of the tracer concentration age τ , χb(0, t − τ) = χ(x, t),

to yield

τb = tadv(1 +
1

α + rexp
), τi = τb + Texp ln(1 +

rexp
α

)

where rexp = tmix/Texp is the ratio of mixing to tracer growth timescales.
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The solution for conserved tracers with periodic boundary conditions, i.e., χ(0, t) =

Re{ei2πt/Tω}, are found in a similar manner. From these solutions it is possible to derive the

time lag in phase τω and amplitude Aω at locations away from the boundary. These are

τωb = tadv

(
α(α+ 1) + r2

ω

α2 + r2
ω

)
, Aωb = exp

(
−σtadvr2

ω

α2 + r2
ω

)

τωi = τωb +
1

ω
atan(

rω
α

) , Aωi = Aωb +
α√

α2 + r2
ω

where rω = 2πtmix/Tω is the ratio of the timescales for mixing and tracer variations.
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Table 1: Explanation of Symbols

Symbol Definition Type

u current speed model parameter

α ratio of current to interior width model parameter

tmix current-interior mixing time model parameter

tadv = x/u advective time constrained parameter

Pe = tmix/tadv Peclet number constrained parameter

Γ mean transit time computed diagnostic

σ standard deviation of TTD computed diagnostic

Texp timescale of exponentially increasing tracer tracer parameter

Tω period of periodic tracer tracer parameter

τexp age of exponentially increasing tracer computed diagnostic

τω phase lag of periodic tracer computed diagnostic

Aω amplitude of periodic tracer computed diagnostic

28



u
t

x=0

x=L

χb χ
i

δiδb

mix

Figure 1: Schematic of boundary current model. The model consists of two regions, a

boundary current with width δb and uniform flow u, and a larger interior reservoir with

width δi (> δb) and no flow. Mixing between the regions is parameterised as relaxation with

timescale tmix. χb(x, t) and χi(x, t) are the tracer concentrations in the boundary current

and interior reservoir.
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Figure 2: TTDs for DWBC model with fractional boundary current width α = 0.1, advective

time tadv = 1 yr, and mixing time tmix = (a) 10, (b) 1, (c) 0.2, and (d) 0.1 yrs. The vertical

dashed lines show the mean transit time Γ.
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Figure 3: TTDs at a distance x = (a) 1500, (b) 3000, (c) 6000, (d) 9000 and (e) 13500 km

downstream from source for α = 0.1, tmix = 1 yr, and u = 1500 km/yr (4.8 cm/s). The

advective time tadv to these locations is 1, 2, 4, 6, and 8 yrs, respectively.
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Figure 4: Variation of ratio of age of exponential tracer to advective time τexp/tadv with

mixing time tmix, for tracer growth time Texp = 100 (solid curve), 20 (dotted), 10 (dashed), 5

(dot-dashed), and 1 yrs (triple dot-dash). The horizontal dotted line shows the mean transit

time Γ .
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Figure 5: Variation of (a) mean transit time Γ, age of exponential tracer τexp, and phase lag

of periodic tracer τω and (b) amplitude of period tracer Aω with x/u, for α = 0.1 and mixing

time tmix = 1.0 yr. The upper set of curves in (a) show Γ (dotted curve) and tracer age with

Texp = 50 (solid curve), 20 (dashed), 10 (dot-dashed), and 5 yrs (triple dot-dash), whereas

the lower set of curves show the phase lag for Tω = 20 (solid), 10 (dotted), 5 (dashed) and

1 (dot-dashed) yrs.
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Figure 6: Variation of (a) phase lag τω and (b) amplitude Aω of periodic tracers with mixing

time tmix, for periods equal to 20 (solid curves), 10 (dotted), 5 (dashed) and 1 (dot-dashed)

yrs. In both plots α = 0.1 and tadv = 1 yr.
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Figure 7: Variation of (a) tritium, (b) tritium-helium age, (c) CFC11 concentration age, and

(d) CFC11/CFC12 ratio age with x for tmix = 4 (dot-dashed curves), 2 (dashed), 1 (solid)

and 0.5 (dotted) yrs. In these calculations α = 0.1 and u = 5 cm/s (u = 1575 km/yr).

Tritium concentrations and ages are for 1981, whereas CFC ages are for 1991. Symbols are

data from (a,b) Doney and Jenkins (1994) or (c,d) Smethie et al. (2000). See text for details.
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Figure 8: Variation of SF6 (long dashed curves), CFC113 (dotted), tritium-helium (triple

dot -dash), CFC12 (solid), CFC11 (dashed), and CCl4 (dot-dashed) tracer ages (in 1991)

with distance x, for tmix = 1 yr, α = 0.1 and u = 5 cm/s.
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